$$
\begin{aligned}
& x=2+\frac{3}{5} y \\
& 2+\frac{3}{5} y-\frac{5}{-5} y=0 \\
& 2+-\frac{2}{5} y=0 \quad 2=\frac{2}{5} y \quad 2 \cdot \frac{5}{2}=y
\end{aligned}
$$

LESSON 7.2 Systems of Linear Equations

Graphical Interpretation - For these systems, the number of solutions is one of the following:

$$
\begin{array}{ll}
4=4 & 0=4 \\
0=0 &
\end{array}
$$

3. No solutions

Method of Elimination- main idea subtract the two equations to eliminate one of the variables.

STEPS

- Obtain coefficients for \times (or y) that are equal by multiplying all terms of one equation by a constant.
- Subtract the equations to eliminate one variable and solve the resulting equation.
- Substitute this back into one of the original equations and solve.
- Check your solution in both of the original equations.

Example Solve the system using the method of elimination.

$$
\left\{\begin{array}{l}
() \quad \begin{array}{l}
2 \\
(10 x+6 y=18 \\
) \cdot 5
\end{array} \quad-(10 x-20 y=70)
\end{array}\right.
$$

$$
5 x+3 y=9
$$

$2 x-4 y=14$

$$
\frac{26 y}{26}=\frac{-52}{26}
$$

$$
\begin{aligned}
& 2 x-4(-2)=14 \\
& 2 x+8=14
\end{aligned}
$$

$$
y=-2
$$

$$
2_{x}=6 \quad x=3
$$

$$
x=3 \quad\left(3 i i^{2}\right)
$$

Example
Solve the system using the method of elimination.
$\left\{\begin{array}{l}(x-2 y=3) \cdot 2 \\ -2 x+4 y=1\end{array}\right.$
$-2 x+4 y=-6$
$\frac{-2 x+4 y=1}{1}$

$\perp Q=$
$0=-7$

Example
Solve the system using the method of elimination.

$$
\left\{\begin{array}{c}
(2 x-y=1) \cdot 2 \\
4 x-2 y=2
\end{array}\right.
$$

inf. sol.

$$
4_{11}^{4}-2 y=2
$$

$$
-4 x-2 y=2
$$

$$
O=O
$$

