Precalculus Sec. 2.5 Fundamental Theorem of Algebra

-the set of complex numbers includes all the Real numbers, rational, irrational and integers

Fundamental Theorem of Algebra If f(x) is a polynomial of degree n, where n>0, then f has at least one zero in the complex number system.

-this means that a degree *n* polynomial has exactly *n* zeros. These zeros can be real or complex and they may be repeated (multiplicity).

This is the graph of

$$f(x) = x^5 - 4x^4 + x^3 + 2$$

What is the degree of the function?

How many zeros does the does the function have? $\stackrel{\textstyle <}{\sim}$

According to the graph, how many real zeros does the function have?

How many complex zeros does the function have?

How many zeros does $f(x) = x^2 - 6x + 9$ have? Find them:

How many zeros does $x^3 + 4x$ have? Find them:

Rational Zeros Test- the possible real zeros of a polynomial with integer

coefficients is

± factors of constant

± factors of leading coefficient

How many zeros does $f(x) = x^5 + x^3 + 2x^2 - 12x + 8$ have?

Find possible zeros:

Find the zeros:

$$(x+2)(x-1)(x-1)(x^2+4)=0$$

complex zeros occur in conjugate pairs

Let f(x) be a polynomial that has <u>real coefficients</u>. If a+bi ($b \ne 0$), is a zero of f(x), then the conjugate a-bi is also a zero of f(x).

Example

Write a third degree polynomial with zeros of -5 and 3-2i

 $\widehat{\otimes} = \left(\times + 2 \right) \left(\times - \left(3 - 5 \right) \right) \left(\times - \left(3 + 5 \right) \right) = \left(\times \right)$

Write a 4th degree polynomial with zeros -1, -1, and $3i_{j}$

Examples

Find all the zeros of the function.

Find all the zeros of the function.

$$f(x) = x^4 - 3x^3 + 6x^2 + 2x - 60 \quad \text{given that } 1 + 3i \text{ is a zero.}$$

$$(x - (1 + 3i)) \quad (x - (1 - 3i)) \quad (x - (1 -$$